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Introduction

❑ Behavioral biometrics (non exhaustive)

Keystroke Dynamics Touchscreen Human Activity
Voice and Speech 

Recognition Signature
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Introduction
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❑ Problematic

User identification considering their behaviors.

• How efficient are 

classical machine 

learning methods on 

such data?

• What about  deep

learning approaches?
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❑Human activity
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1
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Table I: Overview of activity recognition based on classical machine learning approaches. k-NN : k-Nearest Neighbor; SVM : Support Vector
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❑ Keystroke dynamics

Related Work
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Table II: Overview of keystroke dynamics relative works and performance metrics [19]
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Used models for time 
series classification

Classical Machine Learning

SVM

Neural Network

Random Forest

AdaBoost

Logistic Regression

Naive Bayes

kNN

Stacking

Deep Learning Models

Fully Convolutional Neural Networks

Residual Network

Comparative Study
2

On Orange 3.27

On Python 3.8
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Workflow - Orange data mining software1

Data Mining

Open source machine learning 

and data visualization.

Interactive Data Visualization

Perform simple data analysis with 

clever data visualization.

Visual Programming

Interactive data exploration for rapid 

qualitative analysis with clean 

visualizations. It helps to build data 

analysis workflows visually with a large 

diverse toolbox

8
1 https://orangedatamining.com/

Add-ons Extend Functionality

Use various add-ons available within 

Orange to mine data from external data 

sources, perform natural language 

processing and text mining.

3
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1

Fig 1. Generic workflow for 
user identification on Orange

Workflow 3
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30 users 110 users

1°) Human activities – HAR database 2°) Keystroke dynamics – GREYC-NISLAB database

Protocol 3
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Database preprocessing

15

❑ Training set : 70% per user data in the 

database

❑ Testing set : 30% per user data in the 

database

❑ PT represent the fusion of features 

(P1+P2+P3+P4+P5) from GREYC-NISLAB 

database 

Protocol 3
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❑ Cumulative Match Characteristic (CMC) Curve

❑ Area Under the Curve (AUC)

❑ Recall (R)

❑ Precision score (P)

❑ Classification Accuracy (A or CA)

Performance Metrics 3
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Performance : Deep Learning Approaches on Python 3.8

Table X: UCI-HAR and GREYC-NISLAB deep performance metrics

• HAR → UCI-HAR  database

• PT → fusion of features (P1+P2+P3+P4+P5) from GREYC-NISLAB database

Experimental Results

Deep Learning Methods give good results but not exceptional !

4
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Performance : Classical Machine Learning on Orange

❑ HAR database
Table VII: User identification performance metrics with Orange workflow on HAR dataset from human activities.

Table VIII: User identification performance metrics with Orange workflow on GREYC-NISLAB from keystroke dynamics.

❑ GREYC-NISLAB database

• In a context of one type password, 
Identification rate is [63.67% - 84.30%]

• In a context of 5 type passwords, 

Identification rate is 98.30%

By analyzing users activities, and merging all 

the models, in 93.90% of the cases we can 

recognize a person among the 30 users.

4
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Fig 4. CMC curve of Stacking model in Orange workflow

❑ HAR database ❑ GREYC-NISLAB database

CMC curve on behavioral biometrics data

(a) (b)

4
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❑ Are we able to profile an user ?

20

Table IX: User identification (based on user knowledge) performance 

with Orange workflow on GREYC-NISLAB database.

Traditional machine learning

tools can have a significant

impact on a person's privacy!

Soft biometrics 4
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±

❑ To advise new solution of identification on the 

behavioral biometric to secure the access to the 

services

❑ Since deep method does not give excellent results, 

by using GAN solutions, it would allow to make data 

augmentation and thus improve the results of the 

deep method.

Conclusion 5
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Thank you
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Appendix
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Classifiers parameters

❑ Classical machine learning models parameters

Table IV: Models parameters for the classical approach

❑ Deep learning models – Architecture’s & Optimization’s

Table V: Architecture’s hyperparameters for the deep learning approaches

Table VI: Optimization’s hyperparameters for the deep learning approaches
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