How Artificial Intelligence can be used for **Behavioral Identification?**

Yris Brice Wandji Piugie^{1,2}, Joël Di Manno², Christophe Rosenberger¹ and Christophe **Charrier**¹

¹Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

²FIME SAS, Caen, FRANCE

{brice.wandji, joel.dimanno}@fime.com, christophe.rosenberger@ensicaen.fr, christophe.charrier@unicaen.fr

Overall Goal : Identify a User knowing her/his Behavior

1. Context and Problematic

Behavioral biometrics

4. Protocol description

□ Training set : 70% per user data in the dataset Testing set : 30% per user data in the dataset

> □ Human activities – HAR database □ Keystroke dynamics – GREYC-NISLAB database

Keystroke Dynamics

Human Activity

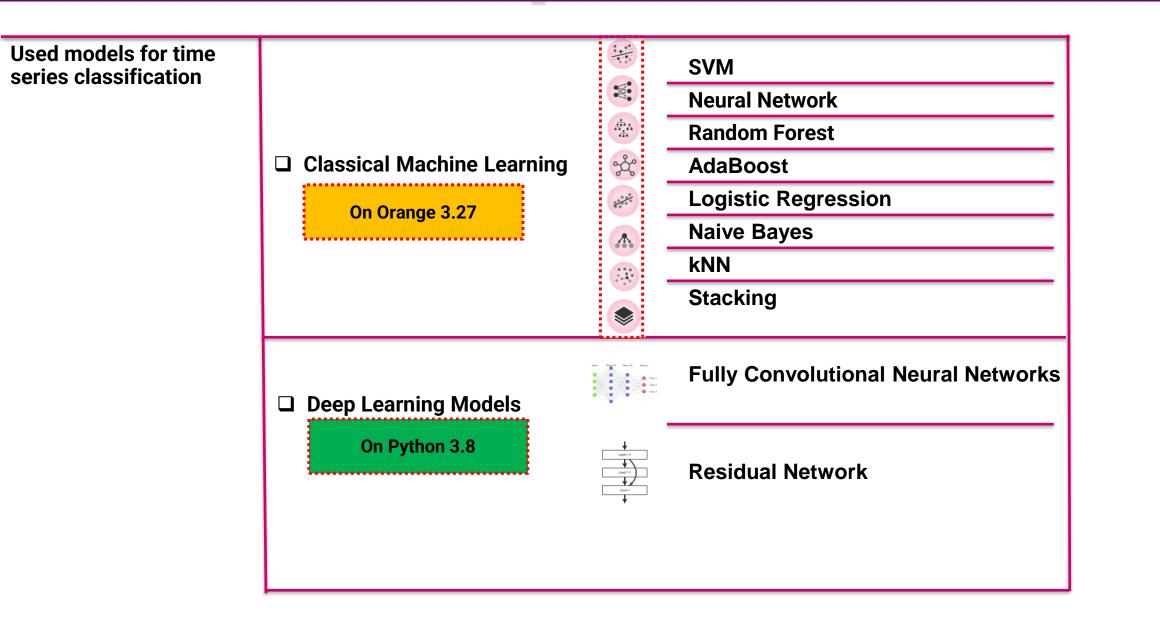
Signature Recognition

Problematic

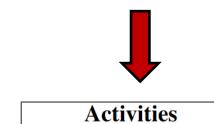
User identification considering their behaviors

Touchscreen

2. Comparative Study



3. Generic Workflow for ML



30 users

Table III: Passphrases

Password	Description	Size	Features
P1	leonardo dicaprio	17-char	64
P2	the rolling stones	18-char	68
P3	michael schumacher	18-char	68
P4	red hot chilli peppers	22-char	84
P5	united states of america	24-char	92
P_T	fusion of features (P1+P2+P3+P4+P5)	99-char	376
	110 users		

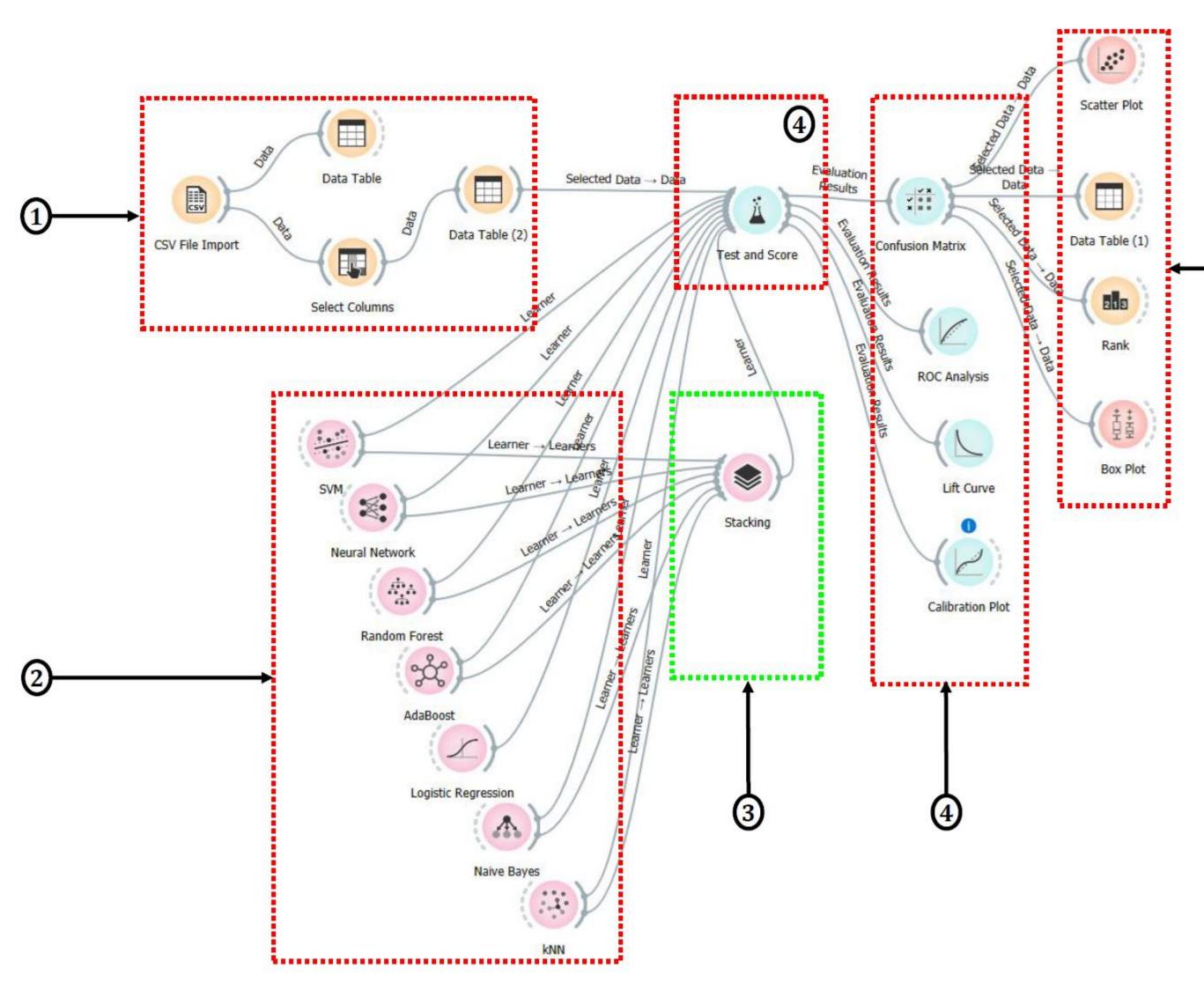
Cumulative Match Characteristic (CMC) Curve (1)Identification results on human activity 0.99 0.98 0.97 (2)_ 0.96 ິວ 0.95 0.94 0.93 (3)

5. Performance Metrics

□Classification Accuracy (A or CA) $A = \frac{T_P + T_N}{T_P + T_N + F_P + F_N}$

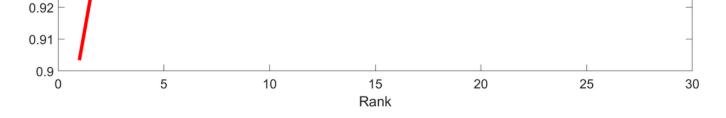
□Precision score (P) $P = \frac{T_P}{T_P + F_P}$

□Recall (R) $R = \frac{T_P}{T_P + F_N}$



GREYC-NISLAB database

□ Area Under the Curve (AUC)



6. Experimental Results

Deep Learning Models

Table X: UCI-HAR and GREYC-NISLAB deep performance metrics

	Dataset	Classifier name	CA (%)	P (%)	R (%)
	HAR	ResNet	87.05	87.20	86.73
		FCN	68.58	80.09	68.24
	P_T	ResNet	80.30	82.94	82.23
		FCN	76.06	78.95	79.01
				Ļ	
Classical Machine	Learning	De	ep Learning Method	ds give good resເ	ults but not exce
LIAD datah					

• HAR database

Table VII: User identification performance metrics with Orange workflow on HAR
 dataset from human activities.

Model	AUC (%)	CA (%)	P (%)	R (%)
Stack	99.65	93.89	93.90	93.89
Neural Networks	98.97	87.75	87.73	87.75
Random Forest	98.21	85.78	85.89	85.78
kNN	97.56	81.40	82.07	81.40
AdaBoost	89.33	81.06	81.25	81.06
SVM	96.57	78.45	80.22	78.45
Logistic Regression	96.76	78.38	78.40	78.38
Naive Bayes	79.24	41.33	48.49	41.33

By analyzing users activities, and merging all the models, in 93.90% of the cases we can recognize a person among the 30 users.

7. CMC curve on behavioral biometrics data

□ HAR database

เห่เลียง

fication results on human activit 0.99 assphrase passphrase 3 0.98 passphrase 4 passphrase 5 0.97 0.96 0.95 ר 0.94 0.93 0.92 0.91 0.9 10 5 Rank

Fig 4. CMC curve of Stacking model in Orange workflow

• **GREYC-NISLAB database**

Table VIII: User identification performance metrics with Orange workflow on GREYC-NISLAB from keystroke dynamics.

Password database	Model	AUC (%)	CA (%)	P (%)	R (%)	
P1	Stack	96.22	63.09	63.67	63.10	
P2	Stack	99.08	69.73	72.15	69.73	
P3	Stack	98.49	63.91	66.10	63.91	
P4	Stack	99.22	77.73	79.64	77.73	
P5	Stack	98.56	83.73	84.30	83.73	
P_T	Stack	99.99	98.10	98.3	98.10	

M/a and able to identify and upon an an
We are able to identify one user among
the 110 users with a goal rate over the
98% of the cases.

Traditional machine learning tools can have a significant impact on a person's privacy!

CA(%)

98.18

99.27

88.73

70.73

PIUGIE, Yris Brice Wandji, DI MANNO, Joël, ROSENBERGER, Christophe, et al. How Artificial Intelligence can be used for Behavioral Identification?. In : 2021 International Conference on Cyberworlds (CW). IEEE, 2021. p. 246-253.