PERFORMANCE AND SECURITY EVALUATION OF BEHAVIORAL BIOMETRIC SYSTEMS

Ph.D. thesis defense

Yris Brice WANDJI PIUGIE

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, FRANCE Fime SAS, 14000 Caen, FRANCE

Supervision:

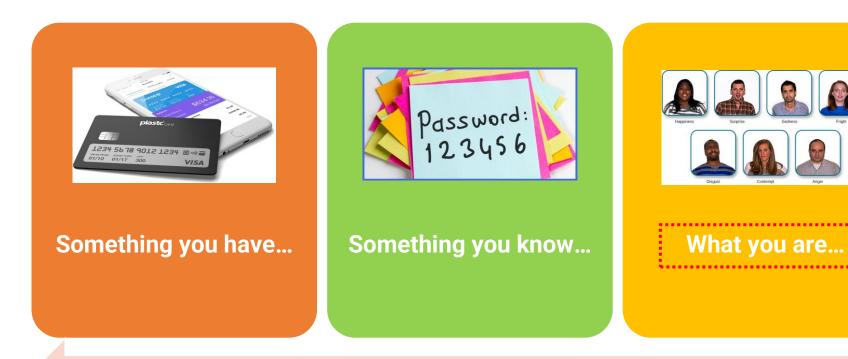
- Christophe ROSENBERGER
- Christophe CHARRIER
- Joël DI MANNO

Context

In 2021, at least \$20 billion was paid out to ransomware hackers

User authentication as cybersecurity countermeasures

User authentication



Three main solutions for user authentication

Physiological

Iris | retina

Fingerprint

Palm | vein

Behavioral

Voice

Human Activities

Gesture

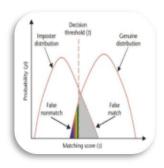
Keystroke

Biometric certification/evaluation

- > Why do we need certification?
 - Security
 - User experience

Evaluation methodology

- > Technology evaluation
- Scenario-based evaluation
- > Operational evaluation



Performance measurement

Presentation Attack Detection evaluation

Major certification actors

Standards

- ISO 39794-17
- ➤ ISO 19795
- ISO 30107

Authority

Develop interoperable authentication standards based on public key cryptography to solve the **password problem**

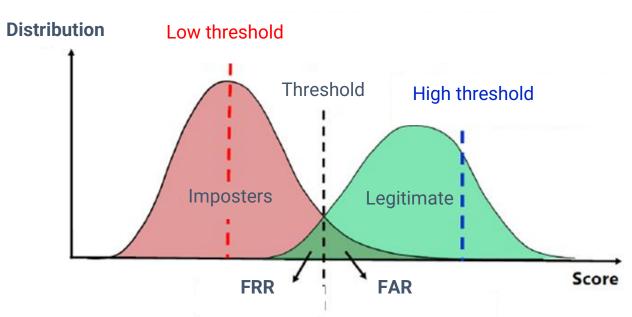
Laboratory

Testing lab

Metrics used

Biometric data: simulating impostor and legimate attempts

- > FAR (False Acceptance Rate): percentage of impostors wrongly match by the system.
- FRR (False Rejection Rate): percentage of users wrongly rejected.
- EER (Equal Error Rate): error rate corresponding to a setting of the biometric system's decision threshold so that the FAR value is equal to FRR.



Performance measurements (example)

FIDO 3.0 requirements by levels

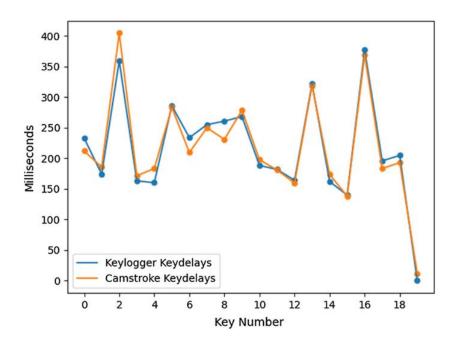
	BioLevel 1	BioLevel 1+	BioLevel 2	BioLevel 2+
Number of test subjects	25	245	25	245
FAR	1%	1:10k	1%	1:10k
FRR	7%	5%	7%	5%

Note:

- > Requirements on FAR and FRR are given at 80% confidence
- ➤ For BioLevel 1 and BioLevel 2, Documented self attestation FAR and FRR are mandatory respectively at 1:10k and 5%

Presentation attack detection (PAD)

- The aim of PAD test Evaluate the reaction of a biometric security product to various PAI (Presentation Attack Instrument) known as spoofs.
- Examples of PAI in behavioral, simulating dynamic typing through keystroke imitation



Ph.D. objective

Contribute to the certification of behavioral biometric systems:

- by assessing performance
- by assessing presentation attacks

Specific objectives

- 1. Proposing a generic method for analyzing behavioral biometrics
- 2. Generating synthetic behavioral presentation attack datasets

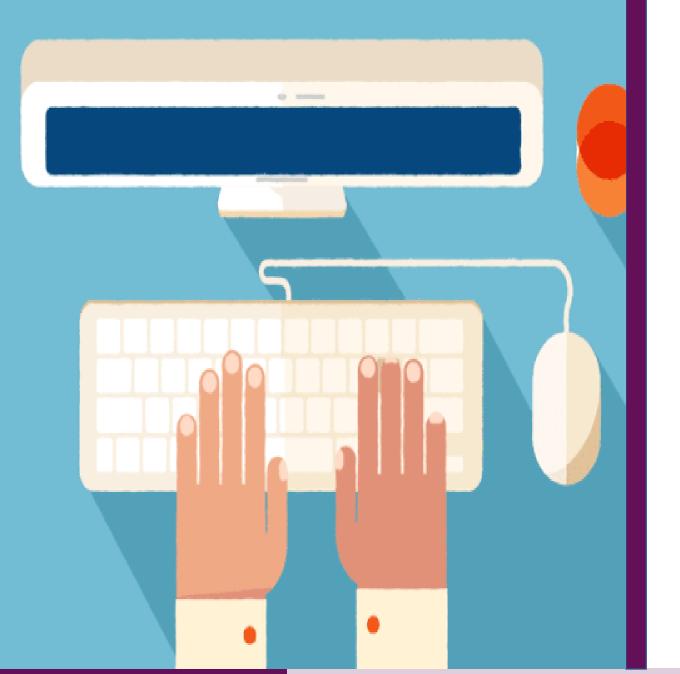
Contents

1. Introduction

2. Generic behavioral biometric systems

3. Generating synthetic behavioral presentation attack

4. Conclusions and perspectives



Contents

- Introduction
- · Related works
- Proposed method
- Protocol
- Results
- Summary

Motivation

> Objective

Proposed a baseline system to evaluate behavioral biometrics

> Validation

Keystroke dynamics

Human activity

Keystroke dynamics based user authentication

Overview of keystroke dynamics for user authentication-related work using neural networks.

Study	Features	Classification	Testing type	Env.	#Users	Samples	EER
Andrean et al. [20]	Latency, Trigraph/N-graph	MLP	Static, Dynamic	controlled	51	400	16.14%
Lu et al. [21]	Latency, Trigraph/N-graph	CNN+RNN	-	controlled	260	-	05.97%
Çeker et al. [22]	-	CNN Gauss-newton	Static, Dynamic	controlled	133	-	06.50%
Alpar [23]	Trigraph/N-graph	based neural network	-	-	13	780	05.10%
Roth <i>et al.</i> [24]	Digraph/N-graph	Digraph Static	Static, Dynamic	controlled	50	-	11.00%
Harun et al. [25]	Latency	NN, dist. classi- fier	Static	Controlled	15	150	22.90%
Revett et al. [26]	Latency, Trigraph/N-graph	Specht Probabilistic NN	Static	Controlled	50	10000	05.70%

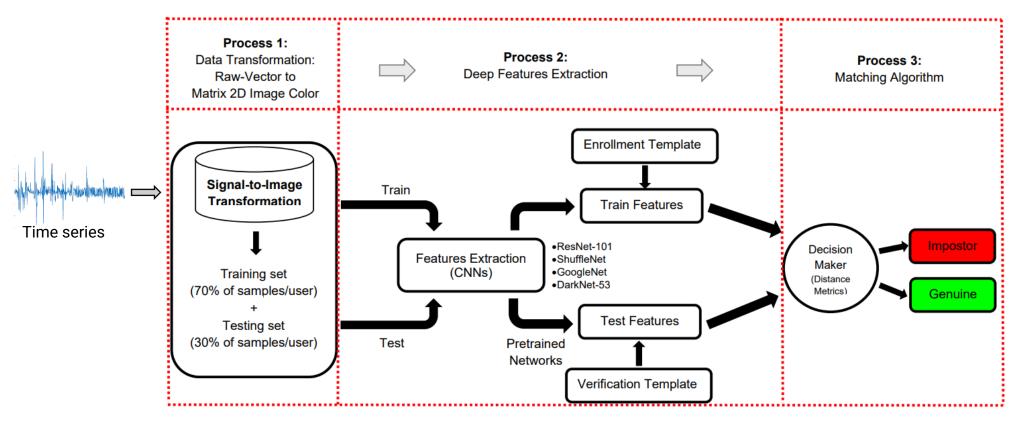
Generic system – Related works

Human activities authentication

Overview of user activity authentication in the state of the art.

Paper	Approach	Method	Activity	Input Source	Accuracy	EER
(Marsico and Mecca, 2017)	Action recognition	DTW	Gait	Smartphone	[83.00% – 93.00%]	[0.09% – 0.10%]
(Patel et al., 2016)	Continuous user authentication	Ten different classifier	Walking, sit- ting	Mobile devices	-	07.50%
(Zhang, 2019)	Learning human identity from motion patterns	Dense Clock- work RNN	Walking	Smartphone	93.02%	18.17%
(Mantyjarvi et al., 2005)	Identifying users from gait pattern	Correlation coefficients	walking	Smartphone	[72% - 88%]	7%
(Muaaz and Mayrhofer, 2013)	Gait recognition, analysis of ap- proaches	SVM	Walking	Cell phone	-	33.30%
(Zhong et al., 2015)	Pace independent mobile gait bio- metrics	Nearest neighbor	Walking	Mobile	-	7.22%
(Zareen and Jabin, 2016)	User verification	HMM	25 users, 500 signatures	Samsung Galaxy Note	-	06.20%
(Gafurov et al., 2006)	User verification	Histogram similarity and Cycle length	Gait	Mobile devices	-	[05.00% – 09.00%]
(Parkinson et al., 2021)	User verification	Manhattan distance	Hand move- ment	Keyboard	[89.00% – 94.00%]	[06.00% – 11.00%]

Design of the generic behavioral biometric systems



Architecture of our proposed keystroke dynamics based authentication system

Generic system – Process 1

Data transformation

➤ The time series v composed of 378 values is represented by a matrix **M** of size 28x28.

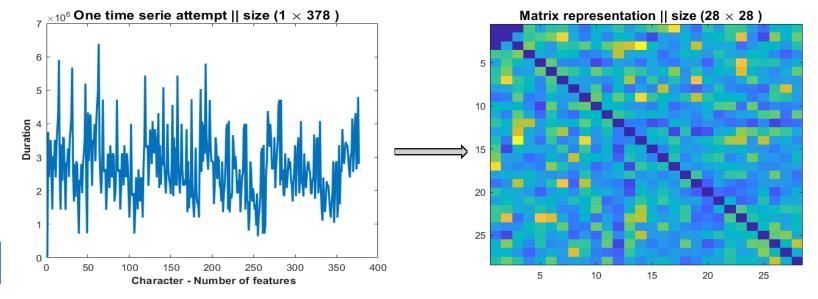
$$m = \frac{n(n-1)}{2}$$

wiiere

m: the length of featuresn: the size of the matrix

$$\mathbf{M}(\mathbf{i},\mathbf{j}) = v \left[\binom{n}{2} - \binom{n-i}{2} + (j-i-1) \right]$$

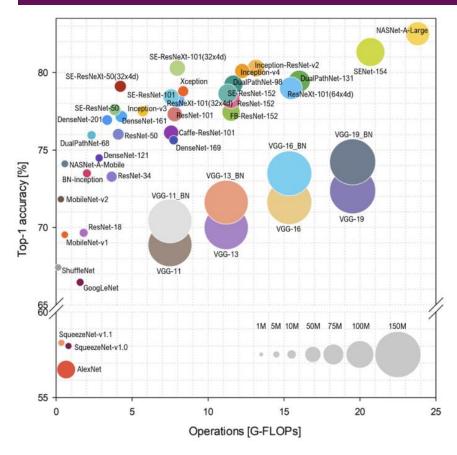
➤ It represents the number of distinct pairs that can be formed from n elements.



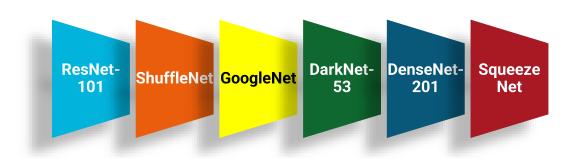
378 values represented by a matrix of size 28x28.

Generic system – Process 2

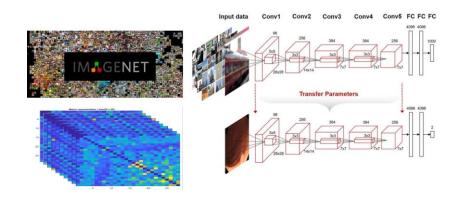
Deep features extractions



Deep learning architectures



TRANSFER LEARNING



Matching algorithm: distance metrics between reference (xs) vs sample (xt)

Minkowski distance

$$d = \sum_{j=1}^{n} |x_{sj} - x'_{tj}|$$

Euclidean distance

$$d^2 = (x_s - x_t)(x_s - x_t)'$$

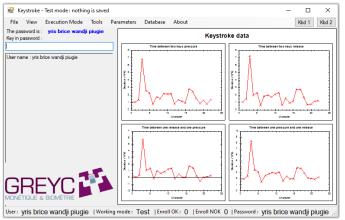
Cosine distance

$$d = 1 - \frac{x_s x_t'}{\sqrt{(x_s x_s')(x_t x_t')}}$$

Generic system – Protocol

Keystroke dynamics - GREYC-NISLAB database

GREYC keystroke software

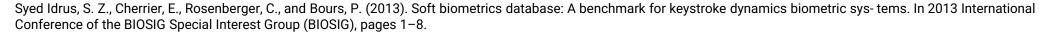


Passphrases

Password	Description	Size	Features
P1	leonardo dicaprio	17-char	64
P2	the rolling stones	18-char	68
P3	michael schumacher	18-char	68
P4	red hot chilli peppers	22-char	84
P5	united states of america	24-char	92
P_T	fusion of features (P1+P2+P3+P4+P5)	99-char	376

2200 samples/time series (20 attempts per user)

User	70 (France); 40 (Norway)
Gender	78 males (47 from France, 31 from Norway);
Gender	32 females (23 from France, 9 from Norway)
Age Category	< 30 years old (37 men, 14 women);
(between 15 and 65 years old)	\geq 30 years old (41 men, 18 women)
Handedness	98 right-handed (70 men, 28 women);
Handedness	12 left-handed (8 men, 4 women)

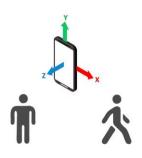


Generic system – Protocol

Human activities – database

30 users wearing a **Samsung Galaxy S II** on waist using embedded:

- > Accelerometer
- Gyroscope



Data captured on:

- > 3-axial angular velocity
- > 3-axial linear acceleration

Activities, including 10,299 samples for each activity along with their respective descriptions in the UCI-HAR database.

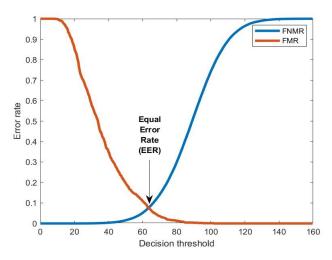
Activity	Abbreviation	No. of Samples	Each Human Activity ratio	Description
Laying	lyx	1722	16.72%	Subject sleeps or lies down on a bed
Sitting	six	1544	14.99%	Subject sits on a chair either working or resting
Standing	stx	1406	13.65%	Subject stands and talks to someone
Walking	wlx	1777	17.25%	Subject goes down multiple flights
Walking Downstair	wdn	1906	18.51%	Subject goes down multiple flights
Walking Upstairs	wup	1944	18.88%	Subject goes up multiple flights

Generic system – Protocol

Preprocessing

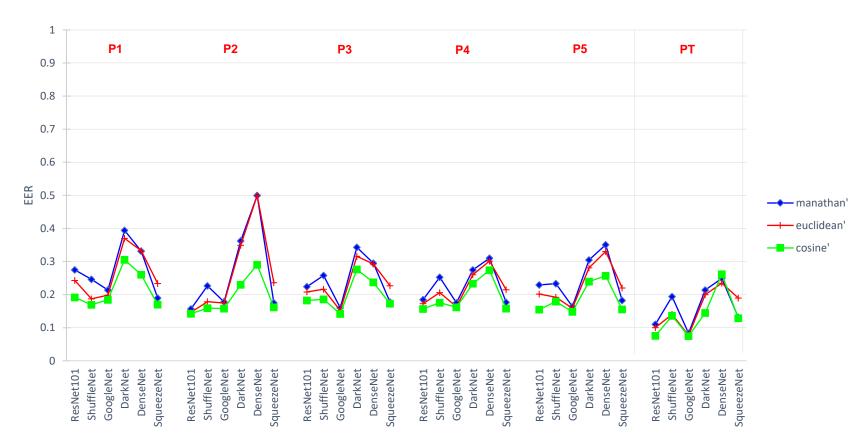
- Enrollment template: 70% of the sample attempts per user in the dataset (training set).
- Verification samples: 30% of the samples attempts per user in the dataset (testing set).

Architectures and optimizations hyperparameters for the deep learning approaches Relationship between FMR, FNMR and EER



Models	#Layers	#Depth	Image Input Size	Activate	Normalize	Algorithm	Loss	#Epochs	#Batch	#Learning rate
ResNet-101	347	101	224-by-224	ReLU	Batch	SGDM	cross-entropy	500	10	0.001
ShuffleNet	172	50	224-by-224	ReLU	Batch	SGDM	cross-entropy	500	10	0.001
GoogleNet	144	22	224-by-224	ReLU	Batch	SGDM	cross-entropy	500	10	0.001
DarkNet-53	184	53	256-by-256	ReLU	Batch	SGDM	cross-entropy	500	10	0.001
DenseNet-201	708	201	224-by-224	ReLU	Batch	SGDM	cross-entropy	500	10	0.001
SqueezeNet	68	18	227-by-227	ReLU	Batch	SGDM	cross-entropy	500	10	0.001

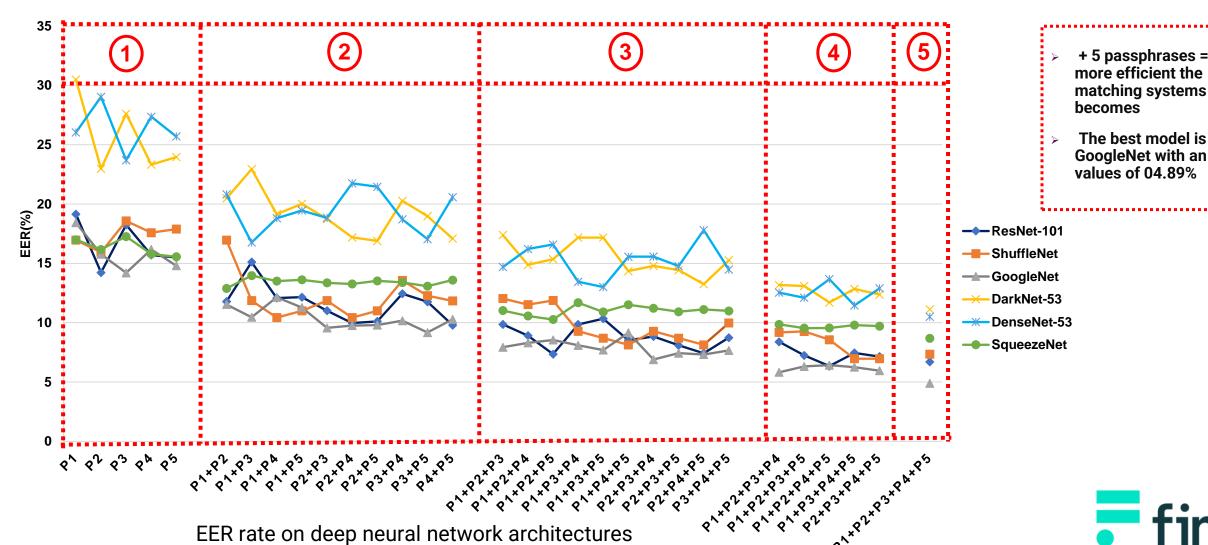
5 types passphrase correspond to PT



- P_T: The more we have information about the user, the better are the results (04.89%).
- ResNet and GoogleNet offer best result
- Used of the Cosine distance metric for the rest of performance evaluation

EER (x100) rate on deep architectures for P1, P2, P3, P4, P5 and PT sub-databases

Generic system – What is the performance when the user enters multiple passphrases?



- + 5 passphrases => the more efficient the matching systems
- GoogleNet with an EER values of 04.89%

Keystroke dynamics in a context of multi-instances

Fusion of deep features versus Fusion of scores levels.

Models (EER_{cosine})	Fusion of features	Fusion of scores
ResNet-101	07.55%	06.70%
ShuffleNet	13.59%	07.34%
GoogleNet	07.45%	04.89%
DarkNet-53	14.96%	11.11%
DenseNet-201	26.18%	10.50%
SqueezeNet	12.87%	08.68%

Reported work on keystroke dynamics

Comparison with other published works in keystroke dynamics.

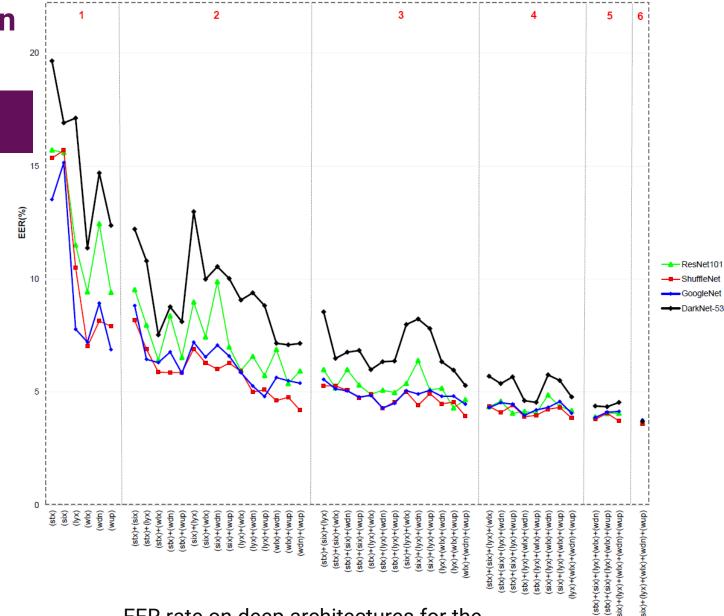
Database	Author/S (ref)	Years	Classifiers	EER
GREYC-NISLAB	This work	2021	$\mathbf{GoogleNet}$	4.89%
GREYC-NISLAB	Idrus et al. [Idrus et al., 2015]	2015	SVM	[08.45% - 10.63%]
Clarkson II	Li et al. [Li et al., 2021]	2021	CNN & CNN-GRU	[07.55% - 07.74%]
Synthetic	Ayotte et al. [Ayotte et al., 2021a]	2021	SVM & MLP	[04.90% - 05.46%]
GREYC 2009 vs WEB GREYC	Mhenni et al., [Mhenni et al., 2018]	2018	kNN	[06.61% - 07.08%]
GREYC Keystroke	Zhong et al. [Zhong and Deng, 2015]	2015	SVM	[08.45% - 10.65%]

> Good results compared with the state of the art in terms of **EER score**.

Generic system – Human activity authentication

Fusion of score

- + activities => the more efficient the matching system becomes
- The best model is ShuffleNet with an EER value of 3.58%



EER rate on deep architectures for the multi-instances biometric system.

User authentication based human activity

Fusion of deep features versus Fusion of scores level on UCI-HAR dataset

Models (EER_{cosine})	Fusion of features	Fusion of scores
ResNet-101	12.48%	3.63%
ShuffleNet	$\boldsymbol{11.57\%}$	$\boldsymbol{3.58\%}$
GoogleNet	13.52%	3.76%
DarkNet-53	11.72%	3.70%

Generic system – Comparison with recent works

Comparison with other published works (target = user)

Dataset	Author/S (ref)	Years	Classifiers	EER
UCI-HAR (target =	[Wandji Piugie	2023	ShuffleNet	03.57%
users)	et al., 2023]			
UCI-HAR (target =	Mekruksavanich et	2021	DeepConvLSTM	5.10%
users)	al. [Mekruksavanich			
	and Jitpattanakul,			
	2021]			
Touch gestures data	Patel et al. [Patel	2016	Ten classifiers	07.50%
	et al., 2016]			
WISDM	Zhang et	2019	Dense Clockwork	18.17%
	al. [Zhang, 2019]		RNN	
Gait signal data	Mantyjarvi et	2005	Correlation	07%
	al. [Mantyjarvi		coefficients	
	et al., 2005]			
Biometric gait data	Muaazz et	2013	SVM	33.30%
	al. [Muaaz and			
	Mayrhofer, 2013]			
Mobile gait data	Zhong et al. [Zhong	2015	Nearest neighbor	07.22%
	et al., 2015]			

Good results compared with the state of the art in terms of **EER score**.

Generic system – Summary

- > Proposal of a generic system for analyzing behavioral biometric data.
- Use of time series-to-image transformation.
- Good results compared to the state of the art on the two tested modalities.

International journal

Yris Brice Wandji Piugie, Christophe Charrier, Joël Di Manno, Christophe Rosenberger, "Deep Features Fusion for User Authentication Based on Human Activity," in IET Biometrics Journal, vol. 12, no. 4, pp. 222-234, July 2023. (ranked Q2)

International conference

- Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, Christophe Charrier, "Keystroke Dynamics based User Authentication using Deep Learning Neural Networks," International Conference on Cyberworlds (CW), Kanazawa, Japan, 2022, p. 220-227. (ranked CORE B)
- > Best Full paper award at the International Conference Cyberworlds 2022 in Kanazawa, Japan
- Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, Christophe Charrier, "How Artificial Intelligence can be used for Behavioral Identification?", International Conference on Cyberworlds (CW). IEEE, Caen, France, 2021, pp. 246-253. (ranked CORE B).

Contents

1. Introduction

2. Generic behavioral biometric systems

3. Generating synthetic behavioral presentation attack

4. Conclusions and Perspectives

Contents

- Introduction
- Related works
- Proposed architecture
- Protocol
- Results
- Summary

Synthetic PAI – Introduction

Context

- Despite promising results and a wide range of applications of biometric systems
- > Biometric systems remain vulnerable to malicious attacks, particularly presentation attacks

Specific objectives

- 1. Build a behavioral instrument attacks (PAI)
- 2. Presentation attack test with the generated PAI

Synthetic PAI – Related works

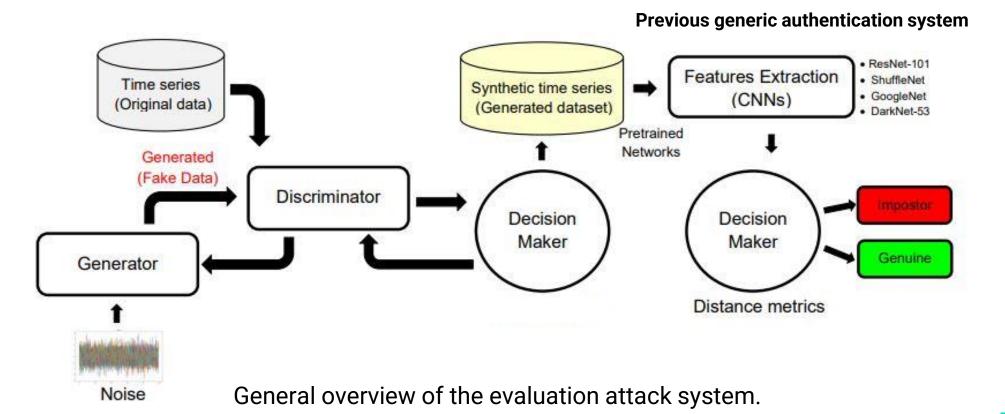
Review of GAN networks for time series applications

Collection of GAN architectures, their applications, datasets used in their experiments, and evaluation criteria for assessing the quality of each respective GAN.

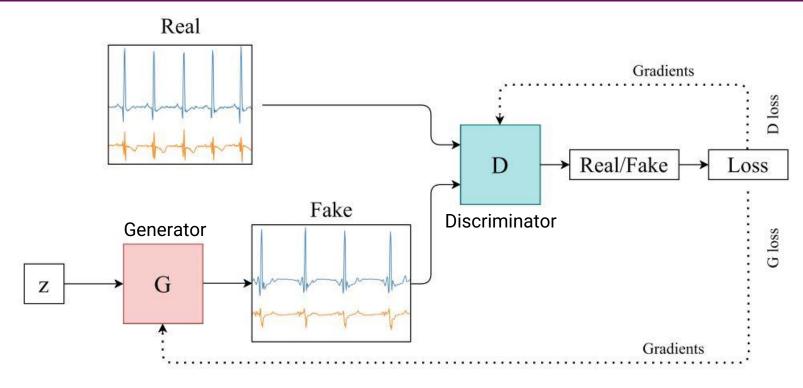
Application	GAN Architecture(s)	Dataset(s)	Evaluation Metrics
Anomaly detection	LSTM-LSTM [25]; LSTM- (LSTM&CNN) [26]; LSTM- LSTM (MAD-GAN) [27]	SET50, NYC taxi data, ECG, SWaT, WADI	Manipulated data used as a test set, ROC curve, precision, recall, F1, accuracy
Audio generation	C-RNN-NN [13]; TGAN(variant) [28]; RNN- FCN [29]; DCGAN(variant) [30]; CNN-CNN [31]	Nottingham dataset, midi music files, MIR-1K, The- Session, speech	Human perception, polyphony, scale consistency, tone span, repetitions, NSDR, SIR, SAR, FD, t-SNE, distribution of notes
Financial time series generation/prediction	TimeGAN [9]; SigCWGAN [32]; DAT-GAN [33]; QuantGAN [34]	S&P 500 index(SPX), Dow Jones index (DJI), ETFs	Marginal distributions, dependencies, TSTR, Wasserstein distance, EM distance, DY metric, ACF score, leverage effect score, discriminative score, predictive score
Time series estima- tion/prediction	LSTM-NN [35]; LSTM-CNN [36]; LSTM-MLP [36]	Meteorological data, Tru- ven MarketScan dataset	RMSE, MAE, NS, WI, LMI
Time series imputa- tion/repairing	MTS-GAN [37]; CNN-CNN [38]; DCGAN(variant) [39]; AE-GRUI [40]; RGAN [41]; FCN-FCN [42]; GRUI-GRUI [43]	TEP, point machine, wind turbine data, PeMS, Phy- sioNet Challenge 2012, KDD CUP 2018, parking lot data	Visually, MMD, MAE, MSE, RMSE, MRE, spatial similarity, AUC score
Other time series gen- eration	VAE-CNN [44]	Fixed length time se- ries "vehicle and engine speed"	DTW, SSIM
Medical/Physiological generation	LSTM-LSTM [14], [45]-[49]; LSTM-CNN [50], [51]; BiLSTM- CNN [52]; BiGridLSTM- CNN [53]; CNN-CNN [54], [55]; AE-CNN [56]; FCNN [57]	EEG, ECG, EHRs, PPG, EMG, speech, NAF, MNIST, synthetic sets	TSTR, MMD, reconstruction error, DTW, PCC, IS, FID, ED, S-WD, RMSE, MAE, FD, PRD, averaging samples, WA, UAR, MV-DTW

Synthetic PAI – Proposed architecture

Evaluation attack system



GAN principle



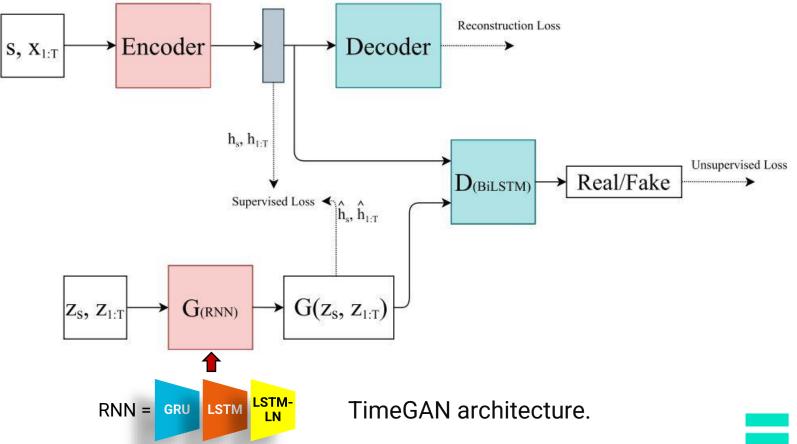
Generative adversarial network.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27

Synthetic PAI – TimeGAN architecture

Methodology for generating synthetic signals

- s : static feature
- > x: temporal feature
- h: real latent codes
- ĥ : synthetic latent codes



Synthetic PAI – Protocol

TimeGAN network Parameter

Module

GRU : Gated Recurrent Unit

> LSTM : Long Short Term Memory

LSTM-LN: Long Short Term Memory Layer Normalization

TimeGAN network parameters applied on GREYC-NISLAB and UCI-HAR databases

Parameter	Option
Module	'GRU', 'LSTM', 'LSTM LN'
Hidden dimensions	24
Number of layers	5
Iterations	10000
Batch size	128

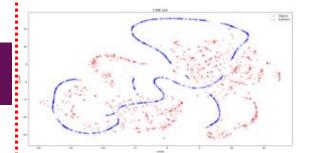
Synthetic PAI – Method results

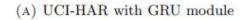
GREYC Electronics and Computer Science Laboratory

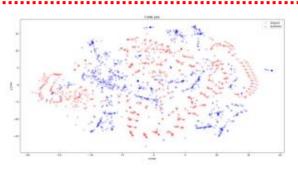
Visual inspection: t-SNE

t-SNE (t-Distributed Stochastic Neighbor Embedding)

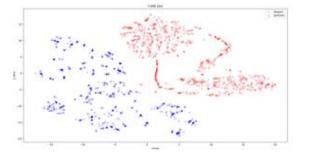
- Dimensionality reduction
- Data Visualization
- Preserving Local Similarities



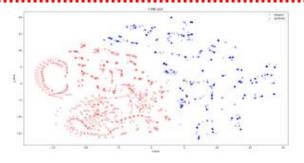




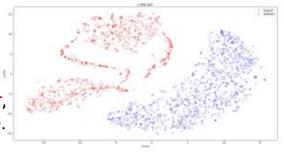
(B) GREYC-NISLAB with GRU module



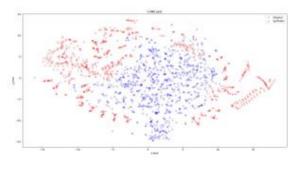
(c) UCI-HAR with LSTM module



(D) GREYC-NISLAB with LSTM module



(E) UCI-HAR with LSTM LN module



(F) GREYC-NISLAB with LSTM LN module

The real dataset is in red color, and the synthetic dataset is in blue.

Synthetic PAI – Method results

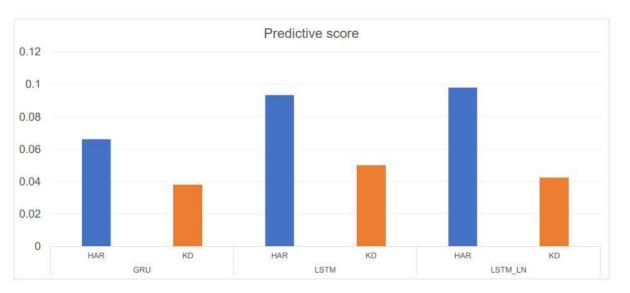
Objective metric: predictive score

Pearson's Correlation PCC =
$$\frac{\sum_{i=1}^{N}(x_i-\tilde{x})(y_i-\tilde{y})}{\sqrt{(\sum_{i=1}^{N}((x_i-\tilde{x})^2\sum_{i=1}^{N}((y_i-\tilde{y})^2)^2)}}$$

- > Percent Root mean square $PRD = \sqrt{\frac{\sum_{i=1}^{N}((x_i y_i)^2)}{\sum_{i=1}^{N}((x_i)^2)}}$
- Root Mean Square Error

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} ((x_i - y_i)^2)}$$

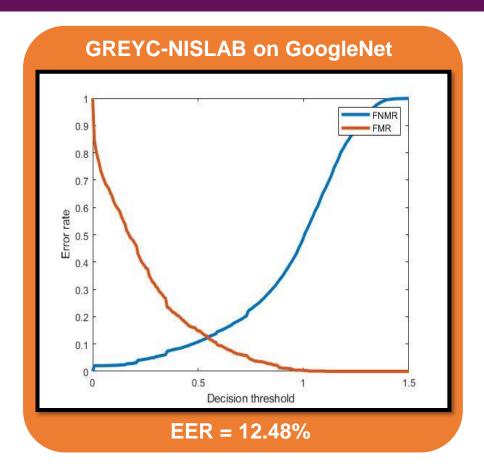
Mean Relative Absolute Error MRAE = $=\frac{1}{N}\sum_{i=1}^{N}\left|\frac{x_i-y_i}{x_i-f_i}\right|$

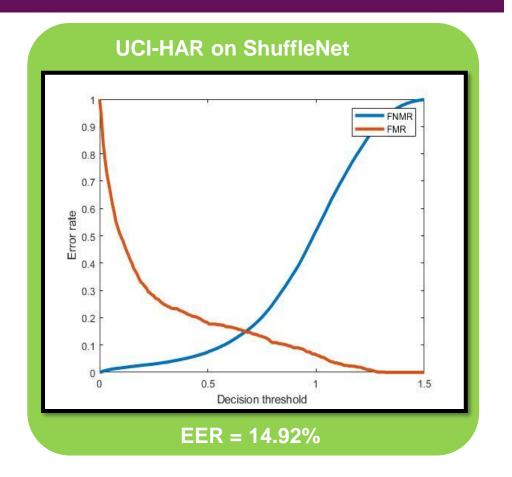


TimeGAN with predictive score (MRAE).

Synthetic PAI – Performance evaluation

Synthetic data evaluation





Comparison of synthetic versus real data

Performance metrics comparison

Dataset	Classifier name	Type of data	EER
UCI-HAR	ShuffeNet	Real Synthetic	03.57% $14.92%$
GREYC-NISLAB	GoogleNet	Real Synthetic	04.89% $12.48%$

- Consistent in term of EER values
- > Synthetic behavioral biometric data obtain higher EER values

Synthetic PAI – Summary

Results obtained

- > Proposal of generic synthetic behavioral data.
- Consistent results in terms of visual inspection with t-SNE.
- Preserving temporal dynamics, meaning that new sequences respect the original relationships between variables over time.
- Data generation to generate databases for performance or presentation attacks.
- > Explain the lower performance on synthetic data.

Contents

1. Introduction

2. Generic behavioral biometric systems

3. Generating Synthetic Behavioral Presentation Attack

4. Conclusions and Perspectives

Conclusions and perspectives

Proposal of a generic method based on Deep for analyzing behavioral biometrics, with applications such as KD and HA.

Work on user identification: demonstrating our capability to profile users using classical machine learning techniques.

Definition of an innovative method for processing raw biometric data considered as time series.

Promising results on behavioral biometric data generation, which can be used to generate databases for performance or presentation attacks.

Conclusions and perspectives

Future research

- > Add psychological features (user's emotion) and evaluate the impact.
- > Explore biaises in behavioral modalities related to gender, age, hand, and ethnicity.
- > Develop quality measurement for behavioral biometric data.
- Generate large behavioral biometric datasets.
- Test behavioral PAIs level C from FIDO requirement.
- Apply the proposed generic method to the analysis of other behavioral biometric modalities.
- > Study the impact of the noise on TimeGAN generation.
- Adapted the loss function (1-loss(F(V(G,D))) on TimeGAN.
- > Consider the user profile in the synthetic behavioral generation.

Publications

International journal

Yris Brice Wandji Piugie, Christophe Charrier, Joël Di Manno, Christophe Rosenberger, "Deep Features Fusion for User Authentication Based on Human Activity," in IET Biometrics Journal, vol. 12, no. 4, pp. 222-234, July 2023. (ranked Q2)

International conferences, Honors & Awards

- Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, Christophe Charrier, "Keystroke Dynamics based User Authentication using Deep Learning Neural Networks," International Conference on Cyberworlds (CW), Kanazawa, Japan, 2022, p. 220-227.(ranked CORE B)
- > Best Full paper award at the International Conference Cyberworlds 2022 in Kanazawa, Japan
- Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, Christophe Charrier, "How Artificial Intelligence can be used for Behavioral Identification?", International Conference on Cyberworlds (CW). IEEE, Caen, France, 2021, pp. 246-253. (ranked CORE B).
- Cyrius Nugier, Diane Leblanc-Albarel, Agathe Blaise, Simon Masson, Paul Huynh and Yris Brice Wandji Piugie, "An Upcycling Tokenization Method for Credit Card Numbers," SECRYPT 2021-18th International Conference on Security and Cryptography, Paris, France, 2021, pp. 1-12. (rank CORE B).

Poster

- Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, and Christophe Charrier. 2022. **Keystroke dynamics-based user authentication using deep learning neural networks** (DFKI-INRIA summer school, Saarbruken-Germany).
- Yris Brice Wandji Piugie, Joël Di Manno, Christophe Rosenberger, and Christophe Charrier. 2021. **How artificial intelligence can be used for behavioral identification?** in 2021 International Conference on Cyberworlds (CW), Caen-France

End

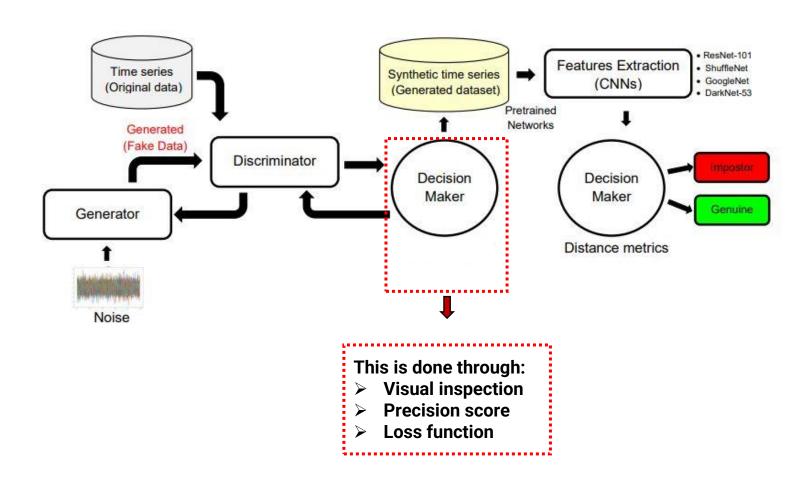
> Thank you

> Questions?

yris-brice.wandji-piugie@unicaen.fr
https://wandjip191.users.greyc.fr/

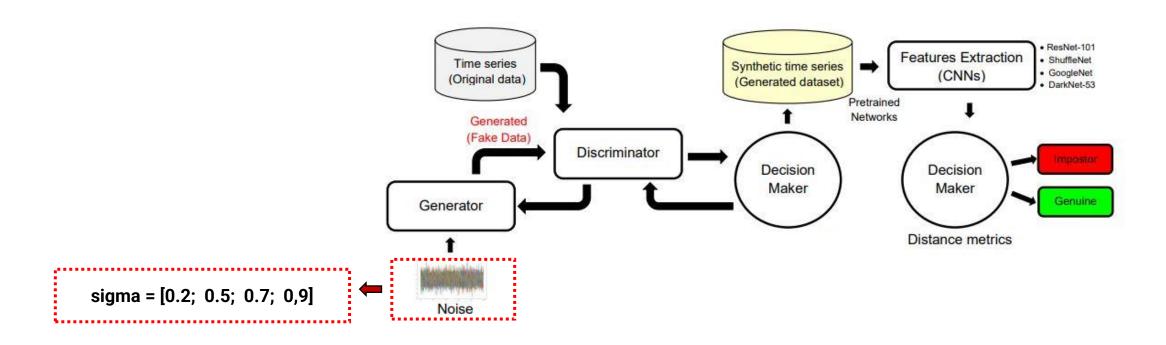
Review answer

Study the impact of the noise



Review answer

Study the impact of the noise



Review answer

PAIs level C from FIDO 3.0 requirement

Level C	Time: > 7 days Expertise: Expert(s) Equipment: Specialized, bespoke	3D printed spoofs	silicon masks, theatrical masks	contact lens/prosthetic eye with a specific pattern	voice synthesizer
	Source of Biometric Characteristic: Difficult	3D fingerprint information from subject	high quality photo, 3D face information from subject	high quality photo in Near IR	multiple recordings of voice to train synthesizer

Level C

Level C includes the most difficult attacks.

- 1. Elapsed time: <=one month, >one month
- 2. Expertise: Expert, multiple experts
- 3. Equipment: Specialized, bespoke
- 4. Access to biometric characteristics: Difficult

If at least one of these characteristics reaches the levels listed above, the attack is categorized as Level C.

More sophisticated voice synthesizer which can playback any words, trained from long, high quality recordings or a database of recordings		5
Impersonation, where an attacker is able to mimic a person's voice	С	

